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ARTICLE INFO ABSTRACT

JEL classification: International policy actions to constrain carbon emissions create substantial risks and opportunities for firms. In

D24 particular, production processes that are relatively high emitting will be more sensitive to the uncertain costs of
D62 emitting carbon dioxide and might further reflect productive inefficiencies. We employ a productive efficiency
G32

model to evaluate firms' carbon emission levels relative to those of best-practice (efficient) peers with com-

Igjf parable production structures. By accounting for total factor productivity and sector-relative performance as-
pects, this measure of carbon efficiency helps to quantify and rank firms' relative dependence on carbon in the
Keywords: production process. We investigate the impact of carbon efficiency on various financial performance outcomes

and evaluate the role of general resource efficiency in explaining these impacts. Using an international sample of
1572 firms over the years 2009-2017, we find superior financial performance in carbon-efficient (best-practice)
firms. On average, a 0.1 higher carbon efficiency is associated with a 1.0% higher profitability and 0.6% lower
systematic risk. While carbon efficiency closely relates to resource efficiency, it also has distinct financial per-
formance impacts, particularly lowering systematic risk. Overall, our findings suggest that carbon-efficient

Carbon efficiency

Financial performance
Directional distance function
Total factor productivity
Data envelopment analysis

production can be valuable from both operational and risk management perspectives.

1. Introduction

International policy actions to constrain carbon emissions’ pose
substantial risks and opportunities for firms. A major risk, commonly
referred to as carbon risk, concerns the uncertain future cost of emitting
carbon. International climate commitments require additional reg-
ulatory measures, such as carbon pricing, subsidies, fines, and product
requirements (Busch and Hoffmann, 2007; IPCC, 2018). These mea-
sures imply that carbon emissions become an important part of firms'
cost function. At the same time, the transition towards a lower-carbon
economy may create competitive opportunities from comparative ad-
vantages to innovations and improvements in eco-efficiency (Ambec
and Lanoie, 2008; Porter and van der Linde, 1995). Eco-efficiency
broadly reflects an objective to reduce ecological damage in economic
activities (WBCSD and WRI, 2004). Yet, the operationalization of this
concept and its relationship with the economic notion of efficiency
generally remain ambiguous.” In this respect, a specific, increasingly
salient issue for corporate managers and stakeholders is the extent to

* Corresponding author.
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which carbon emissions are reduced in production processes: firms
producing relatively abundant carbon emissions will face greater sen-
sitivity to uncertain costs from carbon regulation (Eccles et al., 2011)
and—at a more general level—might exhibit inefficiencies in resource
usage (Ambec and Lanoie, 2008; Porter and van der Linde, 1995).

To date, however, much is still unclear about firms' emission-re-
duction performance and how such performance relates to financial
outcomes (Chen, 2014; Eccles et al., 2011; KPMG, 2017). A growing
body of literature has begun to explore the relationship between carbon
emissions and financial performance (Busch and Lewandowski, 2018).
However, this literature tends to rely on either generic ratings of eco-
efficiency (Derwall et al., 2005; Guenster et al., 2011) or indicators of
carbon emission levels and carbon intensities (carbon emissions scaled
by a business metric) (Busch and Lewandowski, 2018; Trinks et al.,
2020). Investment practitioners also strongly rely on ratings or policies
to altogether exclude high-emitting sectors or firms (Kriiger et al., 2020;
Trinks et al., 2018). A shortcoming of these measures and practices is
that they do not account for the inextricable link between carbon

! In this paper, we use the term ‘carbon emissions’ as a shorthand for emissions of seven greenhouse gases (GHGs) covered by the Kyoto Protocol: carbon dioxide
(CO,), methane (CH,), nitrous oxide (N,0), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF¢), and nitrogen trifluoride (NF5). It is
common practice to express GHGs as a single unit called CO,-equivalents (CO.e), which signifies the amount of CO, that would have the equivalent impact on global

warming.

2 A widespread measure of eco-efficiency is a productivity ratio of economic value per unit of an environmental pressure (WBCSD and WRI, 2004).
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emissions and the production function. Economic theory represents
production as an activity to transform a set of factor inputs into a set of
outputs (Farrell, 1957), typically a mix of economic goods and bads
(Chung et al., 1997). Firms trade-off and substitute between alternative
input-output combinations based on opportunity costs. In addition, the
objective of firms is to reduce inefficiencies, to become the best-practice
among competitors with similar production processes. Hence, to im-
prove our understanding of emission-reduction performance among
firms, it is fruitful to model such performance in a production frame-
work and to closely relate it to the economic notion of efficiency.

This paper studies firm-level carbon emissions from a productive
efficiency perspective. Following the state-of-the-art environmental ef-
ficiency measurement literature (Chung et al., 1997; Picazo-Tadeo
et al., 2005; Picazo-Tadeo and Prior, 2009), we employ a directional
distance function (DDF) model to measure carbon efficiency. Carbon
efficiency is defined as the extent to which a given level of output is
produced with minimum feasible carbon emissions relative to direct
sector peers. Specifically, carbon efficiency provides firms with a score
between O (inefficient) and 1 (efficient) that reflects the fraction by
which carbon emissions can be reduced while maintaining similar le-
vels of inputs and output.®

Being firmly grounded in production theory, our measure of carbon
efficiency offers two main contributions to the commonly used in-
dicators of carbon emission levels or carbon intensities. Firstly, our
carbon efficiency measure helps to understand better how firms per-
form in reducing carbon emissions in a given production process. This is
because the DDF approach we adopt explicitly models carbon emissions
in a joint production framework that accounts for the costly disposal of
carbon emissions and substitution effects among production factors. As
the total factor productivity and sector-relative aspects of firms' carbon
emission levels are accounted for, a more accurate assessment can be
made of firms' relative dependence on carbon in a given input-output
process (see Section 3.1 for details). Secondly, within our efficiency
framework, a direct link can be made between carbon emissions and
productive or resource efficiency.

We conjecture that carbon-inefficient producers are more sensitive
to uncertain carbon regulation (e.g., higher carbon prices) than their
more efficient peers. Carbon regulation typically incentivizes emission
reduction of production within sectors and identifies technical possi-
bilities for efficiency improvements by benchmarking firms against
sector peers (Mullins, 2018).* In addition, emission reduction might
create comparative advantages from efficient resource usage, which
are—by definition—defined relative to sector peers. Lastly, financial
investors typically apply best-in-class selection methods for
asset allocation. Thereby they show an interest in identifying depen-
dence on carbon emissions within production processes (Eccles et al.,
2011).

Given the potentially strong but hitherto unknown association of
carbon efficiency and financial performance outcomes, we employ a
second-stage analysis to study this association. We investigate two va-
luation-related outcome variables, namely return on assets (ROA) and
Tobin's Q. ROA identifies the effects of carbon efficiency on short-term
accounting profits, whereas Tobin's Q captures long-term performance
effects as reflected by forward-looking stock market valuations. Next,
given that carbon efficiency may mitigate firms' sensitivity to uncertain

3 For instance, when a firm has a carbon efficiency of 0.7, this implies that
there is an efficient peer with similar input and good output levels which
produces only 70% the amount of carbon emissions. That is, compared to an
efficient peer, the firm can emit 30% less carbon with a similar set of inputs and
good output.

4 For example, in the EU ETS, there have been clear sector differences re-
garding inclusion in the scheme, allowances allocation amounts and methods.
Since 2013, an important allocation method has become allocation based on a
benchmark of the 10% least carbon-intensive installations, which will be
tightened annually.
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costs of emitting carbon dioxide, we investigate two risk-related out-
come variables, namely systematic risk and total risk. Systematic risk
reflects the sensitivity of stock returns to macroeconomic fluctuations;
it provides a measure of risk which investors require to be compensated
for with higher returns, and therefore—from the perspective of the
firm—drives financing costs (Albuquerque et al., 2019; Elton et al.,
2014; Sharfman and Fernando, 2008). Total risk reflects the total de-
gree of variation in a firm's stock returns (Elton et al., 2014).

Using an international sample of 1572 firms over the period
2009-2017, we identify substantial differences in carbon efficiency and
find superior financial performance in carbon-efficient firms. On
average, an improvement in carbon efficiency of 0.1 is associated with a
1.0% higher profitability and 0.6% lower systematic risk. This suggests
that carbon efficiency might coincide with operational efficiency and
(relatedly) serves to reduce the risk of uncertain carbon pricing reg-
ulation (Lins et al., 2017; Porter and van der Linde, 1995; Sharfman and
Fernando, 2008). In further analysis, we indeed find a close link be-
tween carbon efficiency and resource efficiency. Yet, despite this in-
terrelationship, carbon efficiency remains to have financial perfor-
mance impacts unexplained by resource efficiency, particularly on
systematic risk: for every 0.1 rise in carbon efficiency, systematic risk
drops by on average 0.4%. Taken together, our results showcase the
combined environmental and financial relevance of carbon efficiency.

This paper makes three contributions. First, we contribute to the
ongoing debate on the relationship between corporate environmental
and financial performance (Horvathova, 2010). Our analysis con-
centrates on corporate actions (impact) rather than words (disclosed
policies) and investigates a range of financial performance outcomes.
We thereby provide a solid microeconomic understanding of how en-
vironmental sustainability affects market behavior (Dam and Scholtens,
2015; Kitzmueller and Shimshack, 2012).

Secondly, we answer the call, from both research and practice, for
relevant indicators of firm-level emission-reduction performance (Chen,
2014; Eccles et al., 2011). We explicitly model carbon emissions in a
productive efficiency framework, adding to the literature focusing on
carbon emission levels or carbon intensity indicators (Busch and
Lewandowski, 2018). Our model of carbon efficiency provides a
straightforward tool to identify assets that optimize economic value
relative to carbon emissions (representing social costs) and traditional
factor inputs (representing private costs). This is highly relevant to
investors with preferences for eco-efficiency or portfolio decarboniza-
tion (Boermans and Galema, 2019) and to policymakers which aim to
identify efficient levers of sustainable development.® To date, research
on the impacts of carbon emission reduction on valuation and risk
premia primarily has a macroeconomic focus (Dietz et al., 2018), while
empirical evidence of firm-level impacts seems underdeveloped.

Thirdly, our finding that carbon efficiency positively affects fi-
nancial performance, be it only weakly, helps inform policymakers that
markets at least partly allow for aligning environmental and financial
objectives (PDC, 2017; TCFD, 2017).

This paper is structured as follows. In the next section, we develop
the main hypotheses regarding the association between carbon effi-
ciency and financial performance. Section 3 describes the construction
of our carbon efficiency measure and discusses in greater detail the

° Note that eco-efficiency is a measure of relative environmental pressure and
as such does not guarantee macro-level sustainability, which depends on ab-
solute levels of the pressure (Kuosmanen and Kortelainen, 2005). The im-
portance of efficiency measurement, however, lies in its ability to facilitate
reduction of pressures by identifying the most efficient and effective ways of
doing so. For instance, policies targeting improvement in relative performance
may be easier to implement and less costly to achieve than policies restricting
the level of economic activity (Kuosmanen and Kortelainen, 2005; Mullins,
2018). Moreover, eco-efficiency can operationalize key sustainability aspects,
which is much more informative and useful for practice than generic concepts
of (and proxies for) sustainability.
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distinct contribution of efficiency-based measures to dominant en-
vironmental performance and carbon intensity measures. In Sections 4
and 5, we describe the methodology and data. Results are presented and
discussed in Section 6. Section 7 concludes.

2. Carbon efficiency and financial performance: hypotheses

There are several mechanisms through which corporate carbon
emission reduction might affect financial performance (Dam and
Scholtens, 2015). To provide a rich understanding of the relationship
between carbon efficiency and financial performance, we discuss short-
and long-term performance aspects as well as effects on firm risk. In
this, we closely follow the literature studying the financial performance
impacts of environmental performance (Horvathovéa, 2012) and carbon
performance (Busch and Lewandowski, 2018).

Firstly, firms that emit relatively fewer amounts of carbon might
intuitively divert from pure profit-maximizing behavior, given that
emitting carbon typically reflects an externalized cost. As such,
achieving carbon-efficient production might impose high net private
costs that reduce operating profits and put the firm at a competitive
disadvantage. Low-carbon production technologies can thus be ex-
pected to remain underutilized by profit-maximizing firms. However,
the presence of carbon pricing regulation turns carbon emissions into
private internalized costs, implying profitability per unit of output will
increase given decreasing marginal returns (Dam and Scholtens, 2015).
That is, when emitting carbon becomes more costly, firms with low-
carbon production technologies benefit relative to those with higher-
carbon technologies. Besides, high carbon efficiency may also affect
profitability insofar as it reflects an underlying efficient resource usage.
Firms may thus achieve comparative improvements in productivity
through reduced resource usage, pollution, and waste levels (Ambec
and Lanoie, 2008; Porter and van der Linde, 1995). Consistent with this
argument, the empirical literature tends to find higher short-term
profitability in low-carbon firms (see Busch and Lewandowski, 2018 for
an overview). Therefore, we test whether carbon efficiency positively
relates to short-term accounting-based operating performance, mea-
sured as return on assets (ROA):

H,. Carbon efficiency is positively related to return on assets.

Apart from its association with short-term profits, firms' carbon ef-
ficiency may affect long-term performance expectations as reflected in
market valuations. In this respect, a deep-rooted belief in the corporate
finance literature and practice is that activities directed at reducing
environmental impact impair firms' market value if management de-
parts from the objective to maximize shareholder value (Jensen and
Meckling, 1976). However, theoretically, two economic mechanisms
could drive a positive relationship between carbon efficiency and
market value, as corroborated by the closely related empirical literature
(Busch and Lewandowski, 2018). First, investors may attach higher
valuations to carbon-efficient firms insofar as these firms exhibit su-
perior resource efficiency, as discussed above (expected future cash
flows will be higher), and/or lower risk (future cash flows will be va-
lued more as investors apply a lower discount rate), as we hypothesize
shortly hereafter. Second, carbon-efficient assets may be traded at a
premium when investors value good environmental performance in and
of itself (Dam and Scholtens, 2015; Kitzmueller and Shimshack, 2012).
Consistent with these mechanisms, Dyck et al. (2019) provide causal
evidence that institutional shareholders promote environmental and
social goals, indicating they see additional value in such issues. We,
therefore, hypothesize that carbon efficiency is positively related to
firm value measured by Tobin's Q:

H,. Carbon efficiency is positively related to Tobin's Q.

A growing stream of literature theorizes that good environmental
performance has cash-flow preserving effects (Albuquerque et al., 2019;
Chava, 2014; Lins et al., 2017; Sharfman and Fernando, 2008). The risk
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mitigation hypothesis predicts that high Corporate Social Responsibility
(CSR), and specifically high environmental performance, makes costly
regulations, reputational damages, and litigation events less likely and
less costly. Lins et al. (2017) argue that high-CSR firms have stronger
stakeholder relations, a form of social capital that provides insurance
against event risk. They find high-CSR firms fare better in recessionary
periods. Albuquerque et al. (2019) theoretically show that CSR reduces
systematic risk through a lower incidence and intensity of CSR-related
shocks. A complementary theoretical model is provided in Grey (2018),
which explains the firm's environmental protection activities as a
competitive strategy that enhances market share and safeguards returns
when the firm has strategically lobbied for environmental regulations.

Regarding carbon efficiency, we argue that firms which are less
reliant on carbon emissions in a given production process will be less
sensitive to uncertainty about the future cost of emitting carbon dioxide
(Andersson et al., 2016; Busch and Hoffmann, 2007; Sharfman and
Fernando, 2008). Next to mitigating regulatory risk, high carbon effi-
ciency might further reduce litigation risk (e.g., penalties and fines from
traceable damages (Sharfman and Fernando, 2008)), reputational risk
(reflected by stakeholder pressures for emission reduction) (Eccles
et al., 2011), and competitive risk (due to superior production tech-
nology and alignment with stakeholder pressures (Grey, 2018; Porter
and van der Linde, 1995)). In sum, we may interpret carbon-efficient
production as a form of ‘environmental capital’ that provides insurance
against external shocks to the costs of emitting carbon.

To investigate this notion empirically, we test whether carbon ef-
ficiency impacts long-term risk-related metrics, namely systematic risk
exposure and total risk. First of all, systematic risk measures the sen-
sitivity of the firm's stock returns to market-wide fluctuations. We ex-
pect carbon efficiency to affect systematic risk as shocks to the cost of
carbon likely will be economy-wide and thereby difficult to diversify
(Battiston et al., 2017; Dietz et al., 2018; TCFD, 2017). From the per-
spective of the firm, systematic risk is the conventional channel through
which the cost of equity capital is determined (Albuquerque et al.,
2019; Fisher-Vanden and Thorburn, 2011; Sharfman and Fernando,
2008). These closely related studies, therefore, adopt a similar frame-
work. Our third hypothesis reads:

Hs. Carbon efficiency is negatively related to systematic risk.

The sources of risk that carbon efficiency might be associated with
(as just mentioned) could be partly diversifiable and/or not fully cap-
tured by standard systematic risk factors (Becchetti et al., 2015). As
such, carbon efficiency could affect idiosyncratic or firm-specific risk as
well. Therefore, we further investigate the relationship of carbon effi-
ciency with total risk, which is measured as the standard deviation of
stock returns and thereby encompasses systematic and idiosyncratic
risk. We hypothesize:

H,. Carbon efficiency is negatively related to total risk.

3. Measuring carbon efficiency using a directional distance
function

This section introduces our measure of carbon efficiency and dis-
cusses its relevance as an indicator of environmental performance. We
also provide a brief background to data envelopment analysis (DEA)
and the directional distance function (DDF) approach on which our
measure is based.

3.1. Carbon efficiency vs. single-factor productivity indicators

The finance literature and practice heavily rely on generic indices
(ratings) for measuring corporate environmental protection practices
(e.g., see Albuquerque et al., 2019; Chava, 2014; El Ghoul et al., 2011;
Liang and Renneboog, 2017). Unfortunately, there are several short-
comings to these indices that significantly limit their usefulness for
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evaluating environmental performance and potential relationships be-
tween environmental and economic performance. For instance, there
are concerns about validity, measurement, and nontransparent and
arbitrary aggregation of individual environmental performance ele-
ments (Gonenc and Scholtens, 2017; Trinks et al., 2020). A growing
literature, therefore, focuses on individual performance attributes, such
as eco-efficiency ratings (Derwall et al., 2005; Guenster et al., 201 1)°or
carbon emission intensity (Busch and Lewandowski, 2018; Trinks et al.,
2020).

A downside of single-factor productivity measures, however, is that
they abstract from the interrelationships and trade-offs between output
and input factors, potential technical inefficiencies in the production of
outputs (e.g., overuse of costly capital, labor, or energy), substitution
effects between factor inputs, effects of changing economy-wide con-
ditions, and performance comparisons against best-practice competitors
(see, e.g., Cooper et al., 2007; Kumar Mandal and Madheswaran, 2010;
Mahlberg et al., 2011). These issues are incorporated into the economic
notion of efficiency (Debreu, 1951; Farrell, 1957; Koopmans, 1951). In
production theory, a decision-making unit (DMU), such as a firm, is
deemed efficient if no equiproportional reduction in inputs is possible
for a given level of output, i.e., if its input-output vector lies on the
frontier which defines the best observed practice in the reference set
(Farrell, 1957). As such, the economic notion of efficiency provides two
essential ingredients: (1) a representation of the firm's production
function, or more generally the firm's objective to maximize good
output with minimum feasible amounts of resources, and (2) an eva-
luation of performance relative to a set of efficient peers (ibid.).

To illustrate the difference with single-factor productivity in-
dicators, consider the production of a given level of output and carbon
emission resulting from a technically inefficient process: this implies a
carbon inefficiency since the same vector of inputs and carbon emis-
sions could produce higher levels of output, or, conversely, per unit of
output less carbon could be emitted. An inefficient process thus gen-
erates excessive amounts of carbon emissions, as direct peers emit less
given the same input-output structure. Hence, an efficiency perspective
evaluates carbon emissions relative to a best-practice given the same
production structures. It further allows us to explore the relationship
between carbon efficiency and general productive or resource in-
efficiencies.

In sum, since carbon emissions are directly linked to the production
decision, an appropriate method to evaluate the efficiency of carbon
management will be a joint production framework, accounting for total
factor productivity aspects (see, e.g., Cooper et al., 2007; Kumar
Mandal and Madheswaran, 2010; Mahlberg et al., 2011). This in-
tegrated perspective of economic goods and bads also closely aligns
with the way sustainable market behavior and outcomes are modeled
(Kitzmueller and Shimshack, 2012). In the following, we discuss how
the joint production framework can be applied to measure carbon ef-
ficiency.

3.2. Carbon emissions in a directional distance function model

The traditional measurement of technical efficiency typically ig-
nores negative external effects from production (economic bads), such
as carbon emissions, given the absence of price signals driving alloca-
tion (Koopmans, 1951, p. 38). However, the modeling of such bad
outputs (as they are typically referred to in the environmental efficiency
literature) now represents a growing field of interest in efficiency
analysis (Zhang and Choi, 2014; Zhou et al., 2018). Two relevant
contributions of this field are (1) providing measures of ‘true’ or

6 But eco-efficiency ratings are susceptible to the same concerns, and most of
them tend to put the cart before the horse by constructing the rating based on
environmental issues that are financially material (e.g., see Derwall et al.,
2005).
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‘overall’ efficiency, crediting firms for producing high levels of eco-
nomic goods and discrediting high levels of bads (e.g., Mahlberg et al.,
2011; Zhang et al., 2008), and (2) providing subvector measures of
environmental efficiency or eco-efficiency (Kuosmanen and
Kortelainen, 2005; Picazo-Tadeo et al., 2005).

The purpose of our analysis is to provide a subvector measure of
carbon efficiency, which evaluates firms' carbon emissions in excess of
their efficient peers, for given levels of inputs and good output. This is
in line with Korhonen and Luptacik (2004), Kumar Mandal and
Madheswaran (2010), Picazo-Tadeo et al. (2014), Reinhard et al.
(1999), among others. The directional distance function (DDF) is a
suitable approach to modeling such a process (Picazo-Tadeo et al.,
2012; Picazo-Tadeo et al., 2005; Picazo-Tadeo and Prior, 2009). The
DDF, introduced by Chambers et al. (1996) and first used in environ-
mental efficiency modeling by Chung et al. (1997), generalizes the ra-
dial Shephard's input and output distance functions,” by allowing the
analyst to select the direction in which an inefficient DMU is projected
onto the efficient frontier. As such, it provides a very flexible tool to
evaluate efficiency, accommodating alternative evaluation objectives of
researchers, policymakers, or firm managers (Picazo-Tadeo et al.,
2012).

We adapt the DDF model by specifying a direction vector d =
(—d5, %, —d@®) = (0,0,1) = (0,0, —y"). As such, we adopt a bad
output-minimizing approach, in which DMUs are evaluated in the di-
rection of the bad output (y*), carbon emissions.® Carbon-efficient
DMUs have no peers with lower carbon emission levels for given factor
inputs (x) and good outputs (y®), while carbon-inefficient DMUs can
reduce emissions by a proportion such that they reach the levels of
carbon-efficient peers (targets). Hence, in line with the environmental
efficiency literature (Kuosmanen and Kortelainen, 2005; Picazo-Tadeo
et al., 2005), we define carbon efficiency as the ratio of target-to-actual
carbon emissions.

Fig. 1 explains how carbon efficiency is measured using a stylized
graphical illustration. We refer to Appendix A.1 for a formal definition
of the associated linear program. To allow for a convenient inter-
pretation, all DMUs are scaled to have similar input levels. The solid
line (OABC) represents the efficient frontier formed by the DMUs for
which maximum feasible output is produced for a given level of input.
Carbon efficiency of the inefficient DMUs D and E is measured by
projecting their respective observation points (x, y) = (4, 2) and (2.5,
1) in a horizontal direction onto the efficient points (2, 2) and (1, 1)
respectively. That is, DMUs D and E are each evaluated against an ef-
ficient, best-practice counterpart or virtual DMU that produces the
same good output levels with identical input amounts but with 2 Mt (4
—2) and 1.5 Mt (2.5 - 1) lower CO»e emissions respectively. The carbon
efficiencies of DMUs D and E are thus calculated as: 1 - (4 - 2)/
4) = 0.5 (DMU D); and 1 - ((2.5 - 1)/2.5) = 0.4 (DMU E).

A well-established technique to empirically estimate efficiency is
data envelopment analysis (DEA) (Banker et al., 1984; Charnes et al.,
1978). Being a nonparametric approach, DEA does not require explicit
assumptions about the functional relationship between inputs and
outputs, weights or factor input prices.’ Instead, efficiency is examined
relative to a frontier constructed from a piecewise linear combination of

7 Note that the Shephard input distance function measures inefficiency as the
radial or proportional reduction which is feasible for a given level of output.

8 We carry out the estimation in MATLAB using the DEA toolbox package by
Alvarez et al. (2020), available from http://www.deatoolbox.com.

9 This feature of DEA can, for instance, be employed to assess sustainability
performance based on many underlying indicators without the need to specify
subjective weights for each indicator (Allevi et al., 2019; Chen and Delmas,
2011; Dyckhoff, 2018). However, DEA techniques still require specifying a list
of indicators to evaluate firms on. Moreover, including many individual in-
dicators reduces the discriminatory power of the DEA model; intuitively, spe-
cialization in individual dimensions creates many “best-practice” DMUs (Chen
et al., 2015).
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Fig. 1. Isoquant with one good output and one bad output.

observed inputs and outputs in a sample of DMUs that form the re-
ference set. Given that the purpose of our analysis is to evaluate firms
relative to an observed best-practice, and to be in line with the en-
vironmental efficiency literature, DEA is chosen to estimate effi-
ciency.'?

We compare DMUs with their direct Industry Classification
Benchmark (ICB) sector-level competitors in the same year. Being a
widely recognized classification, which is applied in major global
markets, the ICB sectors closely reflect the nature of the business (pri-
mary source of revenue) and have a minimal inter-sector correlation.'!
The 33 sectors strike a balance between comparability of activities and
precision and discriminatory power of the efficiency estimates. The
number of firms being compared to their sector-year peers is on average
35, ranging from 3 to 70, and in the analysis 19% of all firms are ranked
as fully efficient. As different decision-makers might apply different
classification schemes and given that this choice might affect the effi-
ciency estimates, we perform additional robustness analyses in which
carbon efficiency scores are re-estimated based on alternative sector
classifications with differing levels of aggregation.'”

3.3. Resource efficiency effects

Our measure of carbon efficiency compares the carbon emissions of
a focal firm with those of its efficient peer and, as such, attributes all
inefficiency to excessive carbon emission levels. However, carbon-in-
efficient firms might have relatively abundant emissions because of
their technical inefficiency, i.e., they might produce comparatively low
levels of output given the set of factor inputs employed. Therefore, we
additionally investigate whether and to what extent carbon efficiency
reflects an efficient utilization of resources (Chen et al., 2015). To this

10 Charnes et al. (2013) and Cooper et al. (2007) provide excellent in-
troductions to DEA. Recent applications to environmental efficiency measure-
ment are surveyed in Zhang and Choi (2014) and Zhou et al. (2018). In a
parametric alternative to DEA, Stochastic Frontier Analysis (SFA), an explicit
production function is assumed and econometric techniques are used to esti-
mate the functional parameters. A benefit of DEA is that it makes only a
minimal set of general axiomatic assumptions (Fére et al., 1989; Fire and
Primont, 1995). Yet, in standard DEA models all deviations from the frontier
are interpreted as inefficiencies, whereas SFA (or stochastic DEA) models can
account for randomness in these deviations.

1 https://www.ftserussell.com/financial-data/industry-classification-
benchmark-icb (accessed: May 10, 2019).

12 A drawback of more granular classifications such as the 114 ICB subsectors
is that a very low number of firms are being included in each subsector-year
benchmarking group: With an average of 17 firms and much more prevalent
extremely small samples (e.g., < 3 firms), 34% of all firms would be classified
as fully efficient. This issue becomes more severe in subsample analyses, e.g.
when benchmarking firms from the same country or geographical region.
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end, we include an additional (control) variable, resource efficiency,
which is defined as the technical efficiency determined by the DDF
model using a direction vector d = (—x,0,0) (Picazo-Tadeo and Prior,
2009; Wang et al., 2012 also apply such a direction vector). Appendix
A.1 provides a mathematical formulation of the associated linear pro-
gram.

4. Carbon efficiency and financial performance

We estimate the effect of carbon efficiency on financial performance
using the following panel regression model:

Financial performance;,

= a + f3 Carbon efficiency,_; + y Resource efficiency,,,
+ 5/Xit—1 + A+ ¢ (@D)]

where Financial performance;, is the measure of firm i's financial per-
formance at time t. Note that we lag the independent variables to ensure
they are available when financial performance is measured and to be in
line with the related literature (Albuquerque et al., 2019 Chava, 2014).
We measure short-term operating performance using Return on Assets
(ROA), which is defined as (net income/total assets) * 100%. Long-term
firm value is measured by Tobin's Q, which is calculated as: (common
equity market value — common equity book value + total assets)/total
assets. Next, we consider firms' systematic risk, which is defined as the
sensitivity of stock returns to the market rate of return; it is estimated
using a Capital Asset Pricing Model (CAPM) regression of individual
stock's daily excess returns on the Fama-French global market factor
return from end-of-June of year t-1 until end-of-June of year t.'*> We use
short-window CAPM regressions to capture the time-varying nature of
market beta and its potential causes (Fama and French, 2006 Levi and
Welch, 2017). Finally, we obtain a measure of total risk, which is the
annualized standard deviation of total returns from end-of-June of year
t-1 until end-of-June of year t, expressed in %. Note that the one-year
lag specification in Eq. (1) implies that we estimate the effects of carbon
efficiency on the risk measures in the period end-of-June of year t until
end-of-June of year t+ 1.

The main independent variable of interest is Carbon efficiency;. s,
which is a firm's projected to actual level of carbon emissions. It is
based on the DDF model with direction vector d = (0,0, — y") esti-
mated using DEA. Resource efficiency; ; represents a firm's overall
technical efficiency, which we use to isolate the effects of carbon effi-
ciency and resource efficiency. Resource efficiency is estimated using
the DDF model with a direction vector d = (—x,0,0). Both efficiency
measures are described in Section 3.2 and formulated in Appendix A.1.
X1 is a set of factors that are regarded as important determinant fac-
tors of financial performance (Margolis et al., 2009). We control for size,
measured as the natural logarithm of total assets, and leverage, mea-
sured as total debt over total assets, as larger and less levered firms
might exhibit superior financial performance and lower (default) risk
(Fama and French, 1993). In the regressions with systematic and total
risk as the dependent variables, we further control for book-to-market
ratio (B/M), which is common equity book value divided by its market
value, due to its relevance as a risk factor (Fama and French, 1993).

Additionally, we include a set of fixed effects, denoted by A, which
includes year-, industry-, and country-fixed effects, to rule out potential
confounding from unobserved factors that might drive both carbon
efficiency and financial performance over time and across sectors and
countries (Fama and French, 1997; Gormley and Matsa, 2014;
Horvéthova, 2010)."* In additional robustness analyses, we aim to

13 We address outliers by winsorizing excess returns at the 0.5th and 99.5th
percentiles before estimating betas, and CAPM regressions are required to in-
clude at least 75% of non-missing return observations.

14 Our estimates are unaffected by the inclusion of high-dimensional (inter-
acted) fixed effects (results are available upon request). For instance, industry-
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eliminate further potential confounding events using additional control
variables and a firm-fixed effects panel estimator. We cluster standard
errors at the firm level to control for the correlation between multiple
carbon efficiency observations of the same firm over time. Appendix
A.3 includes a description of all variables.

5. Data

We obtain data on inputs, outputs, and other variables from
Thomson Reuters' Asset4 and Bloomberg'® for all firms with available
data. Table 1 summarizes the main variables as well as the inputs and
outputs used to construct the carbon efficiency and resource efficiency
measures. Note that the summary statistics of both efficiency measures
will be discussed in the results section (Section 6.1). We use the book
value of property, plant, and equipment (PPE) in millions of USD as a
measure for capital usage, as it represents the physical capital attracted
by the firm to operate its business. Labor and energy input are the
number of employees and terajoules (TJ) of total energy use, respec-
tively. Given corporate aims to maximize the direct value of produced
goods or services, we use net sales in millions of USD as a measure for
good output (to be maximized). The bad output (to be minimized) is
Scope 1 carbon emissions in megatonnes (Mt) of COze.'® We focus on
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direct Scope 1 emissions, given our purpose to identify heterogeneity in
production processes. In this respect, Scope 1 emissions are the closest
to the production process and under the direct control of firm man-
agement; by contrast, Scopes 2 and 3 emissions can much more readily
be adjusted without substantial long-term changes to production ac-
tivities (Busch and Lewandowski, 2018).

Fig. 2 shows the number of firms reporting Scope 1 emission data.
We follow the sampling procedure of Trinks et al. (2020), which focuses
on the period 2008-2016, due to quantity and quality of carbon
emission reporting, and addresses extreme observations of carbon
emissions in a systematic and conservative manner. In short, this pro-
cedure amounts to excluding zero reported emissions, firms with ex-
treme emission figures resulting from unconsolidated reporting, and
firms with extreme year-on-year changes in emission intensity. A de-
tailed description is included in Trinks et al. (2020). In additional ro-
bustness analyses, we re-estimate carbon efficiency and resource effi-
ciency for different specifications of the bad output (Scopes 1 + 2
emissions), labor input (wages), and capital input (total assets).

After removing firms belonging to the financial sector and those
reporting on an unconsolidated basis, the sample consists of approxi-
mately 7800 firm-year observations (N), covering 1572 firms, spanning
47 countries. Our study period is 2009-2017, given that we study fi-

Table 1
Summary statistics of efficiency and financial variables. Variable definitions are included in Appendix A.3.
m ) 3) “@ ) 6) @) ®)
N Mean Median StDev Min Max Skewness Kurtosis

Efficiency estimates (2008-2016)
Carbon efficiency (0 to 1) 7800 0.31 0.12 0.38 0.00 1.00 1.02 2.35
Resource efficiency (0 to 1) 7796 0.56 0.50 0.30 0.02 1.00 0.21 1.70
Capital (mln USD) 7800 8417.54 2576.53 18869.89 1.69 263593.69 6.06 54.15
Labor (employees) 7800 42841.31 17931.00 72135.78 28.00 2200000.00 6.46 118.50
Energy (TJ) 7800 54469.67 5750.92 217159.41 1.48 6073969.00 13.14 253.74
Good output (mln USD) 7800 17128.57 6908.00 31624.26 10.62 476294.00 5.45 48.12
Bad output (Mt COxe) 7800 3.88 0.20 12.73 0.00 176.00 6.82 64.03
Financial performance outcomes (2009-2017)
ROA (%) 7689 5.79 5.46 7.71 —73.23 37.00 —-1.61 19.39
Tobin's Q 7489 1.87 1.66 0.81 —0.35 7.00 2.21 10.87
Systematic risk 7657 0.87 0.83 0.46 -0.14 2.34 0.49 3.19
Total risk (%) 7657 32.14 29.04 13.35 14.11 89.34 1.41 5.30
Baseline control variables (2008-2016)
Size 7800 16.07 16.04 1.33 11.75 18.58 —0.08 2.58
Leverage (%) 7800 26.61 25.17 16.05 0.00 96.13 0.68 3.87
B/M 7511 0.70 0.56 0.61 —-0.26 6.85 3.38 23.66

(footnote continued)

by-year fixed effects would rule out potential confounding effects from un-
observed factors that might drive performance across industries over time, such
as demand or productivity shocks (Gormley and Matsa, 2014). A drawback of
high-dimensional fixed effects is attenuation bias from potential measurement
error (ibid.).

15 The dataset is constrained primarily by the available data on carbon
emissions. From Asset4, we obtain carbon emission data as reported by firms in
public sources, mostly annual and CSR reports. From Bloomberg, we use the
data as reported in the Carbon Disclosure Project (CDP) survey. According to a
recent survey among large institutional investors in 2017/2018, both sources
are currently being used with no clear preference for one source over the other
(Kriiger et al., 2020). Given the public nature of the data from Asset4, we use
these data in our main analysis; Bloomberg data are employed for robustness
analysis (results are available upon request). Note that both the Asset4 and
Bloomberg ESG databases contain additional data on ‘estimated carbon emis-
sions’ for firms which have not (yet) publicly reported emission data. However,
due to the lack of comparability between carbon emission estimation models
and the extrapolation used to estimate emissions, using these data would likely
increase measurement error in the DEA efficiency estimates.

eIt is common practice to classify carbon emissions using the three

nancial performance outcomes one year ahead of the independent
variables (Eq. (1)).

We address the effect of potential outliers on our financial perfor-
mance regressions by winsorizing financial variables at the 1° and 99"
percentiles; our results do not change when leaving out this procedure.
Note that we do not winsorize the variables used in the estimation of
efficiency, as this could induce severe bias in the efficiency estimates.
Instead, in robustness analyses, we systematically examine data issues
by alternating the specification of the reference group, inputs, and DEA
model.

Table 2 shows how carbon efficiency is correlated with factor inputs

(footnote continued)

categories or Scopes from the GHG protocol (WBCSD and WRI, 2004). Scope 1
emissions refer to direct emissions, from sources directly owned or controlled
by the firm, such as emissions from the combustion of fossil fuels in power
plants, factories, or vehicles. Scope 2 covers the indirect emissions associated
with purchased electricity. Scope 3 includes any other indirect emissions as-
sociated with production activities within a firm's value chain.
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Fig. 2. Number of non-financial firms reporting Scope 1 CO»e emissions.

Table 2

Pairwise correlations between carbon efficiency, resource efficiency, factor inputs and outputs, and single-factor carbon intensity (2008-2016). Variable definitions
are included in Appendix A.3. All correlation coefficients except (2):(3) and (3):(9) are significant at the 5% level.

(€8] 2) 3 @ ) (6) @ ®) ©
Carbon efficiency (1) 1.00
Resource efficiency (2) 0.64 1.00
Capital (3) —0.06 —0.01 1.00
Labor (4) —0.06 —0.04 0.32 1.00
Energy (5) —0.09 —0.06 0.41 0.10 1.00
Good output (6) 0.03 0.09 0.73 0.60 0.33 1.00
Bad output (7) -0.12 —0.09 0.58 0.11 0.54 0.39 1.00
Carbon intensity (8) -0.16 -0.15 0.06 —0.08 0.17 —-0.06 0.40 1.00
Sector-adj. carbon intensity (9) —0.30 —0.25 —0.00 —0.03 0.14 —0.07 0.22 0.48 1.00

and outputs. Consistent with findings by Cole et al. (2013), the level of
carbon emissions is not only correlated with good outputs but also, and
more strongly, with the use of capital and energy inputs. This finding
underscores the importance of evaluating emissions in a total factor
productivity framework, as we do in this paper (see also Cooper et al.,
2007; Kumar Mandal and Madheswaran, 2010; Mahlberg et al., 2011).

6. Results

This section first summarizes the carbon efficiency estimates. Then,
we report the results regarding the impact of carbon efficiency on fi-
nancial performance.

6.1. Carbon efficiency

Table 1 summarizes the carbon efficiency scores and the financial
performance variables used in the main analysis. The average carbon
efficiency score is 0.31, which implies that the level of carbon emissions
per unit of output of the average firm is 69% higher than the sector-year
efficient peer. Hence, when we focus on carbon emissions only, firms
seem to exhibit substantial differences in emissions generated from si-
milar production (input-good output) structures. Related studies ap-
plying comparable directional vectors also tend to find relatively low
average carbon efficiency levels (Oggioni et al., 2011; Picazo-Tadeo
et al., 2014; Wang et al., 2012; Zhang et al., 2008). The resource effi-
ciency measure exhibits considerable within-sector heterogeneity as
well, given that the average firm uses 44% more inputs compared to the
sector best-practice for observed output levels.

In Table 2, we explore the relationship between our carbon effi-
ciency measure and simple indicators of carbon intensity, i.e., carbon
emissions divided by sales. Carbon efficiency appears to only weakly
correlate with (sector-adjusted) carbon intensity. Our efficiency-based

measure thus clearly differs from simple single-factor intensity-based
measures of carbon emissions, not only conceptually (as described in
Section 3.1) but also empirically.

We further document in Table 2 that carbon efficiency is strongly
positively correlated with resource efficiency. Nearly two-thirds of the
variation in firms' carbon efficiency can be explained by their resource
(factor input) efficiency. Given this finding, it seems important to in-
vestigate to what extent the association between carbon efficiency and
financial performance might be driven by heterogeneity in resource
efficiency. In Section 6.3, we, therefore, aim to isolate the financial
performance impacts of carbon efficiency from those of general re-
source efficiency.

Table 3 provides more detailed by-sector statistics. We find that
carbon efficiency tends to be lower in high-emitting sectors, such as oil
and gas production, chemicals, industrials, construction and materials,
and electricity, as compared to most other sectors. This does not imply
that high-emitting sectors as a whole are less efficient. Instead, because
efficiency is a relative concept, it indicates that particularly in high-
emitting sectors, more pronounced differences are observed between
firms regarding the amounts of carbon emitted for a given input-output
vector.

6.2. Carbon efficiency and financial performance

We evaluate the effect of carbon efficiency on financial performance
(H;-H,4) using the model outlined in Section 4 (Eq. (1)). Carbon effi-
ciency is positively related to short-term profitability (ROA) and ne-
gatively to systematic risk (Table 4). On average, a 0.1 higher carbon
efficiency, i.e., realizing 10% lower carbon emissions while keeping
constant the input-good output production structure, is associated with
a 0.06 percentage points (1.0%) higher profitability and 0.005 (0.6%)
lower market beta (systematic risk). No significant associations with
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Table 3
Carbon efficiency by sector (2008-2016).
ICB Sector name 1) 2) 3)
N Mean StDev
1 Oil & Gas Producers 426 0.28 0.32
2 Oil Equipment & Services 123 0.54 0.43
3 Alternative Energy 52 0.68 0.42
4 Chemicals 477 0.19 0.28
5 Forestry & Paper 88 0.74 0.35
6 Industrial Metals & Mining 272 0.24 0.34
7 Mining 361 0.38 0.34
8 Construction & Materials 449 0.16 0.31
9 Aerospace & Defense 132 0.63 0.33
10 General Industrials 220 0.40 0.44
11 Electronic & Electrical Equipment 248 0.40 0.36
12 Industrial Engineering 404 0.27 0.34
13 Industrial Transportation 302 0.26 0.38
14 Support Services 204 0.33 0.42
15 Automobiles & Parts 278 0.34 0.34
16 Beverages 156 0.31 0.37
17 Food Producers 259 0.33 0.34
18 Household Goods & Home Construction 165 0.30 0.33
19 Leisure Goods 83 0.51 0.38
20 Personal Goods 185 0.35 0.40
21 Tobacco 71 0.67 0.34
22 Health Care Equipment & Services 179 0.15 0.27
23 Pharmaceuticals & Biotechnology 329 0.26 0.34
24 Food & Drug Retailers 127 0.33 0.37
25 General Retailers 215 0.37 0.43
26 Media 225 0.33 0.38
27 Travel & Leisure 387 0.20 0.35
28 Fixed Line Telecommunications 180 0.48 0.40
29 Mobile Telecommunications 165 0.37 0.44
30 Electricity 266 0.31 0.40
31 Gas, Water & Multiutilities 141 0.40 0.41
32 Software & Computer Services 212 0.47 0.43
33 Technology Hardware & Equipment 419 0.15 0.31

Tobin's Q or total risk are found. This result suggests that carbon-effi-
cient firms excel in their short-term operating performance and are
rewarded in equity markets in the form of lower systematic risk. The
latter implies lower expected stock returns, potentially owing to the
lower sensitivity to uncertain carbon regulation (Lins et al., 2017;
Sharfman and Fernando, 2008).

The estimated coefficients for our control variables are generally in
line with the theoretical predictions (Fama and French, 1993). Larger

Table 4
Carbon efficiency and financial performance (2009-2017).
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firms do not exhibit superior financial performance in our sample but
do have higher systematic risk levels; more levered firms are riskier and
less profitable; book-to-market is a strong predictor of risk. Financial
performance also significantly varies over time and between industries
and countries.

Next, we test whether the effect of carbon efficiency captures a more
general effect of efficient resource usage, which does not explicitly re-
late to firms' success in minimizing carbon emissions in their production
structure. To this end, we include resource efficiency as an additional
control in Eq. (1) to help isolate the influence of carbon efficiency and
general resource efficiency. Although carbon efficiency and resource
efficiency happen to be strongly correlated, they are two distinct
measures by construction, as described in Section 3.3. A potential
downside of this analysis is the presence of multicollinearity: as the two
measures are strongly correlated, our estimates—while still un-
biased—might fail to precisely infer the distinct influence of each
measure on our outcome variables. Tests, however, do not indicate
strongly inflated standard errors in our analysis: correlations between
the explanatory variables are moderate (< 0.8) (Table 3) and variance
inflation factors (VIFs) of our variables of interest range up to 1.9,
which is well below even the most conservative thresholds. In Table 4
columns (2), (4), (6), and (8), we find that the positive association
between carbon efficiency and financial performance is partly attribu-
table to its implicit relation with resource efficiency. This result might
be an attractive feature for corporate stakeholders pursuing both fi-
nancial and carbon efficiency objectives. Yet, carbon efficiency also
remains to have impacts of similar magnitude, which cannot be at-
tributed to variation in resource efficiency, particularly reducing sys-
tematic risk.

Overall, these findings are consistent with our hypothesis that
carbon-efficient economic activity is less sensitive to macroeconomic
shocks, in particular those stemming from intensified carbon regula-
tions, which raise the cost of emitting carbon.

Economically, the effects of carbon efficiency we estimate seem
modest. In some sectors, such as electricity generation, firms with the
highest carbon efficiency have tens of megatonnes lower direct carbon
emissions than their least carbon-efficient peers. Reducing emissions to
their ‘efficient’ levels will thus require substantial operational changes
and upfront investments. As a result, the financial benefits from carbon
efficiency improvements might not be reaped so easily.

By comparison, environmental performance ratings, while being

The estimated equation is: Financial performance;, = a + J Carbon efficiency;,.; + y Resource efficiency,; + 8Xi.;7 + A + &, (Eq. (1)). Financial performance
represents return on assets (ROA) (columns (1) and (2)), Tobin's Q (columns (3) and (4)), systematic risk (columns (5) and (6)), and total risk (columns (7) and (8)).
Carbon efficiency is a firm's efficiency with respect to Scope 1 CO,e emissions, i.e., the ratio of projected to actual carbon emission levels. It is determined by the DDF
model described in Appendix A.1 using a direction vector d = (0,0, —y?). Resource efficiency represents a firm's efficiency with respect to input usage, i.e. the ratio of
projected to actual input levels. It is determined by the DDF model described in Appendix A.1 using a direction vector d = (—x,0,0). X is a set of controls, which
includes firm size, leverage, and in columns (5)-(8) book-to-market ratio (B/M); A is a set of year-, industry-, and country-fixed effects. All variables are defined in
Appendix A.3. Robust standard errors clustered at the firm level are in parentheses. *** p < 0.01, ** p < 0.05, *p < 0.10.

ROA Tobin's Q Systematic risk Total risk
@ (2) 3) “@ ©)] (6) ) [€C))
Carbon 0.597* 0.554 0.036 0.054 —0.048%** —0.032* —0.464 —0.535
efficiency (0.333) (0.340) (0.037) (0.037) (0.017) (0.017) (0.503) (0.508)
Resource 0.092 —0.037 —0.031 0.176
efficiency (0.436) (0.051) (0.023) (0.683)
Size —0.060 —0.062 —0.133%** —0.133%** 0.013** 0.014** —2.241%%* —2.243%*
(0.142) (0.142) (0.016) (0.016) (0.007) (0.007) (0.200) (0.201)
Leverage —0.048%%* —0.048%** —0.006%** —0.006%** 0.001%* 0.001%* 0.116%** 0.117%%*
(0.012) (0.012) (0.001) (0.001) (0.001) (0.001) (0.018) (0.018)
B/M 0.048%** 0.048%*** 1.806%** 1.810%**
(0.012) (0.012) (0.327) (0.327)
N 7689 7685 7489 7485 7430 7427 7430 7427
Adj. R? 0.122 0.122 0.291 0.291 0.433 0.433 0.483 0.483
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predominantly related to the firm's disclosed policies rather than actual
emission-reduction performance, seem to have more pronounced and
significant effects on financial performance (Chava, 2014 Margolis
et al., 2009). For instance, Chava (2014) finds that for each ‘environ-
mental concern’ that firms score in four environmental performance
categories, the cost of equity capital increases by 4.4% relative to the
median firm. Additionally, compared to studies using carbon intensity
measures, our estimates are particularly weak for Tobin's Q and ROA
(Busch and Lewandowski, 2018) but qualitatively similar for risk; for
instance, in a highly comparable sample, Trinks et al. (2020) find a
0.013 rise in systematic risk for each standard deviation increase in
sector-adjusted Scope 1 carbon intensity.'” Altogether, it seems that the
adoption of our productive efficiency perspective provides a more
nuanced picture of firm-level emission-reduction performance, with
potentially material implications for the literature on the carbon-fi-
nancial performance nexus.

6.3. Robustness analyses

Our analysis thus far suggests that firms' excessive dependence on
carbon emissions relative to firms with similar production activities
affects operating performance and firm risk. As we argue, these effects
relate to investors' perception of the impact of carbon constraints on
those firms' future performance and the close connection to resource
efficiency. However, there might be alternative explanations for our
results, namely specification issues of our efficiency estimates and
confounding events (Horvathova, 2010). We perform several robustness
analyses to test these explanations. Taken together, the results indicate
that our main conclusions are not driven by the specification of the
DDF-DEA model, its inputs, the reference set, or by potential sources of
confounding. Our results further suggest that the effect of carbon effi-
ciency is particularly strong in high-emitting industries. The robustness
results are included in Appendix B.

6.3.1. Alternative sector classifications

Given the sensitivity of DEA estimates to data specification, we re-
estimate carbon efficiency and resource efficiency using alternative
sector classifications that are widely applied and are relatively close to
the ICB sectors in terms of granularity, namely the Fama-French 49
industries (FF49), the two-digit Standard Industry Classification codes
(SIC2), and the Thomson Reuters Business Classification industry
groups (TR4). In addition, we alternate the level of granularity by using
the ICB sub-sector level (ICB4) and industry level (ICB1). In Table B.1,
we find results are qualitatively similar to our main results. An excep-
tion is the insignificant results when estimating efficiency among firms
within the aggregate industry group (ICB1) (Panel E), which could be
explained by the widely heterogeneous business activities being
benchmarked. Furthermore, in some cases in columns (5)-(8), negative
effects are estimated for either carbon efficiency or resource efficiency.
Contrary to our main analysis, we find a problematic correlation be-
tween both measures, and a regression using either of the measures
separately results in very similar estimates. This indicates a great dif-
ficulty disentangling individual effects. Still, as we continue to find
consistent estimates for carbon efficiency, we are confident that our
main results are indeed driven by heterogeneous efficiency levels across
firms rather than by the specification of the reference set.

6.3.2. Alternative inputs and window analysis

To further alleviate potential concerns about data specification, we
employ two additional analyses. First, we apply a window analysis, in
which we smoothen the input-output vectors by taking two-year rolling

17 We confirm these findings for our analysis when we re-estimate Eq. (1),
replacing carbon efficiency with carbon intensity or sector-adjusted carbon
intensity (results are available upon request).

Ecological Economics 175 (2020) 106632

window average values before calculating efficiency scores. Second, we
re-estimate efficiency using total assets as an alternative specification of
capital input, wages for the labor input, and Scopes 1 and 2 carbon
emissions for the bad output. As we find, the carbon efficiency scores
indeed tend to differ along with the different specifications of the input-
output vector. For instance, the carbon efficiency measure based on
Scopes 1 and 2 emissions has only a 0.65 correlation with our main
carbon efficiency measure. This divergence can be explained by the
higher amount of variation in the bad output, the reduced number of
observations (for about 400 firm-year cases, Scopes 1 and 2 are not both
observed), and relatedly, the different composition of the bench-
marking group (cf. Table B.1). Ultimately, the definition of the
benchmarking groups and variables will depend on the objectives of the
benchmarking exercise. Nonetheless, we find in Table B.2 (Panels A-D)
that alternative input-output specifications do not materially alter our
main estimates. As such, it seems unlikely that measurement issues
substantially affect our conclusions.

6.3.3. Constant reference set

Our main estimate of efficiency is based on an unbalanced
sample, which closely follows how firms and investors would use all
the information available to them to benchmark firms. However, to
rule out the possibility that the documented effects come from a
changing reference set rather than actual improvements in firms'
underlying production activity, we rerun the analysis using a fully
balanced sample. That is, we track the performance of the same set of
firms through time. To ensure a minimum number of firms are
eliminated from our main sample, we focus on input-output data in
the 2014-2016 period. In Table B.3, we find results to be qualita-
tively similar to our baseline results, despite the considerable re-
duction in statistical power. Hence, carbon efficiency values and
their effects on financial performance do not appear to be driven by
year-on-year changes in the reference set.

6.3.4. Alternative DEA models

Even though we specified our main DEA model as a suitable tool to
measure carbon efficiency (Cook et al., 2014 Dyckhoff, 2018), we want
to rule out the possibility that model specification drives our results. In
the environmental efficiency literature, there are two main alternative
approaches to treating bad outputs: (1) transforming the DEA model, or
(2) applying the traditional DEA model using transformed values of the
bad output or treating such outputs as inputs. Our baseline results are
built upon the first, employing a specific direction vector which focuses
on contracting only carbon emissions. An alternative corporate objec-
tive might be to strive for a contraction of bad output and a simulta-
neous expansion of good output, which follows the original DDF for-
mulation by Chung et al. (1997). In Appendix A.1, we include a
mathematical description of this model. Secondly, following a large
stream of the environmental efficiency literature, we apply a tradi-
tional, well-established input-oriented DEA model (Banker et al., 1984;
Zhou et al., 2018) and include carbon emissions as an additional input
to be minimized (a similar approach is taken by Chen and Delmas
(2011), Cropper and Oates (1992), Hailu and Veeman (2001),
Korhonen and Luptacik (2004), Kumar Mandal and Madheswaran
(2010), and Zhang et al. (2008)). By doing so, a measure of ‘carbon
efficiency’ is obtained that reflects the extent to which the firm mini-
mizes carbon emissions alongside traditional factor inputs (capital,
labor, and energy) as much as possible by the same proportion 6, for
given levels of good output. Appendix A.2 provides a mathematical
formulation of the associated linear program. This second approach
provides an intuitive manner to model firms' objective to minimize
carbon emissions (Dyckhoff and Allen, 2001; Hailu and Veeman,
2001).'® Also, from an ecological perspective, firms' emissions reflect

8 Note that in this approach DEA is effectively used as a multiple-criteria
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their required amount of carbon usage, which essentially signifies the
input of the atmosphere's capacity to absorb emissions (Fire et al.,
2007). In Table B.4, we find that our results are very similar across the
main alternative DEA models.

6.3.5. High-emitting industries and regional results

Naturally, emission-reduction performance is a more salient issue in
high-emitting industries. In these industries, substantial stakeholder
pressures exist and low-carbon production will have more immediate
competitive benefits. For instance, in the power sector, a focal firm's
sales are directly determined by the generation portfolio of competitors
due to the merit order effect. We, therefore, expect carbon efficiency to
have a more pronounced positive impact on financial performance in
high-emitting industries.

Secondly, our main analysis evaluated an international reference
set, whereas regional factors might affect both production activity and
financial performance effects of carbon efficiency.

Therefore, we re-estimate Eq. (1) for the subsample of high-emitting
industries and re-estimate efficiency scores for the subsamples of EU-
firms and US-firms. We find more pronounced effects on systematic risk
in high-emitting industries (Table B.5, Panel A). As hypothesized, high
carbon efficiency thus seems particularly valuable in environmentally
sensitive industries for mitigating financial risk, such as the risk of in-
tensified carbon regulation. In Table B.5, Panel B, we do not find evi-
dence to suggest that effects are particularly strong in the EU sub-
sample. In fact, we find somewhat stronger effects in the US compared
to the EU. A possible explanation for this finding is the low dis-
criminatory power of the DEA model, resulting from small subsamples:
the US subsample includes 316 firms, implying an average group size of
9, and resulting in 45% of firms being classified as fully efficient; for the
EU, this is 498, 15, and 33% respectively. Another explanation is the
reduced statistical power of the regression model.

6.3.6. Confounding factors

We employ two strategies to address potential confounding in our
main regression specification (Eq. (1)). First, we saturate Eq. (1) with
additional control variables to ensure carbon efficiency effects do not
merely reflect effects from generic environmental performance, sensi-
tivity to energy prices, capital intensity, R&D intensity, and other po-
tential confounding factors shown in Tables B.6 and B.7; these are in
line with the related literature (Chava, 2014; El Ghoul et al., 2011;
Lioui and Sharma, 2012).'° Second, on top of the extensive set of ad-
ditional control variables, we control for time-invariant unobserved
heterogeneity that might drive our main results using a firm fixed ef-
fects estimator, which focuses on within-firm changes over time
(Gormley and Matsa, 2014).?° In Tables B.6 and B.7, we find coeffi-
cients to be consistent with our main results, although not all results
remain statistically significant due to reduced statistical power.

6.3.7. Selection bias

Firms' decisions to disclose carbon emission data, and therefore to
have a carbon efficiency score, is unlikely to be random. For instance,
disclosure might correlate with sustainability policies and might be

(footnote continued)

decision-making problem in which DMUs are alternatives and performance is
evaluated based on a set of criteria to be maximized or minimized, representing
preferences for economic goods and economic bads (Cook et al., 2014;
Dyckhoff, 2018).

We do not include R&D intensity in our main regression (Eq. (1)), as it
reduces our sample by approximately 50%.

20 Given the persistence of the dependent variable in Eq. (1) and the small
time dimension of the dataset (T = 6 years, on average), it is less useful to
employ a firm fixed-effects estimator that discards valuable between-firm var-
iation and potentially amplifies noise from measurement error (Gormley and
Matsa, 2014).
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driven by strategic financial motives. To control for the sample selec-
tion bias potentially resulting from this, we use the two-step Heckman
(1979) selection procedure. In the first step, we estimate the selection
hazard (disclosure of carbon emission data) using a probit model; the
variables determining selection are those included Eq. (1) but aug-
mented with two variables that help identify disclosure of carbon
emission data, namely the Thomson Reuters' Asset4 overall environ-
mental sustainability rating (ENVSCORE) and the number of ICB Sector
peer firms that disclose Scope 1 carbon emission data in year t (peer
disclosure). Disclosure by peer firms relates to a focal firm's disclosure
decision through peer effects (Cao et al., 2019; Cheng et al., 2014) but
is theoretically unlikely to influence financial performance outcomes.
Our results are similar when omitting both exclusion restrictions from
the first-stage probit estimation. In the second step, we estimate Eq. (2)
including the selection hazard (Inverse Mills ratio), which controls for
selection bias.

We use the Asset4 ESG database of over 7900 firms to construct a
comprehensive group of non-disclosers, leading to a sample of dis-
closers (26.3%) and non-disclosers (73.7%). In Table B.8, the significant
Inverse Mills ratio indicates that (unobserved) factors that make carbon
emission disclosure more likely tend to be associated with significantly
lower ROA and Tobin's Q, and higher total risk. Selection bias-corrected
estimates (Table B.8) suggest that selection is of minor concern as it
even slightly weakened our baseline results.

7. Conclusion and discussion

We employ a productive efficiency perspective to evaluate firms'
carbon emission levels relative to those of best-practice (efficient) peers
with comparable production activities. Specifically, based on a direc-
tional distance function (DDF) model, we construct a measure of carbon
efficiency that reflects the percentage by which carbon emissions can be
reduced in a given input-good output structure. By accounting for total
factor productivity and sector-relative performance aspects, the mea-
sure helps to quantify and rank firms' relative dependence on carbon in
the production process. In addition, within our efficiency framework, a
direct link can be made between carbon emissions and productive or
resource efficiency.

We examine how carbon efficiency relates to various financial
performance outcomes, namely short-term operating performance,
long-term market valuation, systematic risk, and total risk. Using an
international sample of 1572 firms over the years 2009-2017, we find
superior financial performance in carbon-efficient (best-practice) firms.
On average, a 0.1 higher carbon efficiency is associated with a 1.0%
higher profitability and 0.6% lower systematic risk.

These findings suggest that carbon-efficient production may have
operational efficiency benefits and (relatedly) serve to reduce the risk of
uncertain carbon pricing regulation (Lins et al., 2017; Porter and van
der Linde, 1995; Sharfman and Fernando, 2008). Further analysis in-
deed reveals that carbon efficiency, for a large part, coincides with
resource efficiency, consistent with the idea that abundant levels of
carbon emissions reflect operational inefficiencies. Yet, despite this
interrelationship, we find that carbon efficiency has financial perfor-
mance impacts that cannot be attributed to general resource efficiency,
particularly on systematic risk: for every 0.1 rise in carbon efficiency,
systematic risk drops by on average 0.4%. These results, which survive
an extensive series of robustness analyses, suggest a combined en-
vironmental and financial relevance of carbon efficiency.

Our analysis contributes to the literature relating environmental
and financial performance, which has thus far yielded mixed evidence
and is based on generic ratings of corporate environmental sustain-
ability (Busch and Lewandowski, 2018; Chava, 2014; Horvéthova,
2010; Margolis et al., 2009; Sharfman and Fernando, 2008). By con-
centrating on corporate actions (impact) rather than words (disclosed
policies), our analysis contributes to a solid microeconomic under-
standing of how corporate emission-reduction performance affects
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market behavior. Bénabou and Tirole (2010) theorize that the social
objectives firms pursue might reflect altruistic, strategic, or green-
washing behavior. By investigating the firm's production- and sector-
relative carbon emissions, and relating carbon efficiency to resource
efficiency, our analysis underscores the strategic value of low-emitting
production.

Our results have several practical implications for strategic man-
agement, investment, and policy. Both from an academic and practi-
tioner perspective, there is strong demand for indicators of the depen-
dence on carbon emissions in production at the firm level (Chen, 2014;
Eccles et al., 2011). We feel our carbon efficiency measure is highly
suitable for firms and investors to assess emission-reduction perfor-
mance and to identify assets that optimize economic value relative to
carbon emissions (representing social costs) and traditional factor in-
puts (representing private costs). Our finding that carbon efficiency
significantly impacts financial performance helps better understand the
growing interest in corporate emission disclosure and reduction, par-
ticularly in environmentally sensitive industries (cf. Bénabou and
Tirole, 2010). Specifically, our results align with and contribute to a
growing literature that documents risk-mitigation effects of low-carbon
investment assets (Andersson et al., 2016; Trinks et al., 2020). Fur-
thermore, our analysis may provide policymakers with insights into
how existing production depends on carbon sources and in which areas
there is most potential for emission reduction. The relatively modest
financial performance benefits of carbon efficiency explain the rela-
tively limited uptake of substantial emission-reduction practices; pol-
icymakers are informed that markets currently seem to only partly
allow for aligning environmental objectives with corporate interests
(PDC, 2017; TCFD, 2017). Still, it can be expected that when climate
policy intensifies, carbon efficiency will become a more salient in-
dicator.

In all, we establish that carbon efficiency is an important aspect of
corporate carbon emission-reduction performance with significant fi-
nancial performance implications. Our measure of carbon efficiency
serves as a straightforward and coherent measure that closely follows
the environmental efficiency modeling literature. However, our ana-
lysis also has several limitations, which we leave for future research.
First, given the substantial heterogeneity in carbon efficiency scores,
there might be a need for using more fine-grained reference groups and
input-output vectors, but this will crucially depend on the specific
purpose of the benchmarking exercise (Cook et al., 2014; Dyckhoff,
2018). Secondly and relatedly, our DEA model could be refined, for
instance, by addressing random variation in efficiency estimates using
stochastic DEA models (Charnes et al., 2013; Cooper et al., 2007). Fi-
nally, while our analysis considers direct carbon emissions as a critical
undesirable output factor, additional external effects of production
warrant consideration, such as waste and local pollutant emissions. In
this respect, a promising feature of the DDF model used in this paper is
that it can be readily extended to accommodate multiple sustainability
factors with different measurement units.
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